

## Determination of Liquidus Temperature of Aluminium Electrolysis Electrolyte by Conductivity Method

Fangfang Zhang<sup>1</sup>, Shengzhong Bao<sup>2</sup>, Changlin Li<sup>3</sup>, Gang Li<sup>4</sup> and Jianping Shen<sup>5</sup>

1. Junior Engineer

2. Senior Engineer, Deputy Director

3. Senior Engineer

Zhengzhou Non-ferrous Metals Research Institute of Chalco (ZRI), Zhengzhou, China

4. General Manager Assistant

Chalco Zunyi, Zunyi, China

5. Associate Senior Engineer

Guizhou Huaren New Materials, Guiyang, China

Corresponding author: sz\_bao@chinalco.com.cn

<https://doi.org/10.71659/icsoba2025-al043>

### Abstract

**DOWNLOAD**   
**FULL PAPER**

This paper introduces a method to determine the liquidus temperature based on electrical conductivity variation curves, designed to overcome the challenges in measuring the liquidus temperature of low-temperature aluminium electrolysis electrolyte in the NaF-KF-AlF<sub>3</sub> system. The conductivity of molten electrolyte is measured at multiple temperature points within a defined range both above and below the presumed liquidus temperature using the Continuous Variation of Cell Constant method (CVCC). The liquidus temperature is then identified from the "inflection point" on the conductivity-temperature variation curve. This method was applied to industrial electrolytes, and the results were compared with those obtained via the stepwise cooling curve method, showing a deviation less than 0.17 %, thus validating the method accuracy. Additionally, this method was used to determine the liquidus temperature of the NaF-KF-AlF<sub>3</sub> system at various molecular ratios, revealing clear and consistent patterns. This method is applicable to various electrolyte systems and has the advantage of measuring both liquidus temperature and electrical conductivity.

**Keywords:** Low-temperature aluminium electrolysis electrolyte, Liquidus temperature, Bath Conductivity, CVCC method, NaF-KF-AlF<sub>3</sub> system.

### 1. Introduction

The liquidus temperature of aluminium electrolysis electrolyte is a critical parameter in aluminium electrolysis production [1, 2], as it governs the temperature control during the electrolysis process. Common experimental approaches for determining this temperature include visual observation [3, 4], stepwise cooling curve method [5–7], and differential thermal analysis [8, 9]. The visual observation method incurs substantial errors due to factors such as electrolyte volatilization and subjective interpretation by the experimenter. Therefore, the stepwise cooling curve method or differential thermal analysis is commonly used to measure the liquidus temperature of electrolytes. The principles of the stepwise cooling curve method and differential thermal analysis are basically the same; that is, the electrolyte is first melted in a high-temperature-resistant crucible, and then a temperature sensor immersed in the molten electrolyte tracks the temperature changes of the electrolyte. Due to heat release during the phase change solidification process of the electrolyte, an inflection point appears on the cooling curve of the electrolyte, which helps determine the liquidus temperature of the electrolyte.

Traditional industrial electrolytes are mainly composed of sodium cryolite, excess AlF<sub>3</sub>, CaF<sub>2</sub> and alumina, with relatively straightforward electrolyte compositions. The inflection point on the

cooling curve during their cooling process is more distinct and clearer, allowing the stepwise cooling curve method or differential thermal analysis to accurately measure the liquidus temperature of these electrolytes. However, for electrolytes in the NaF-KF-  $\text{AlF}_3$  system, especially at low molecular ratios, there is no distinct inflection point on the cooling curve, or the inflection point is not at the liquidus temperature. The presumed reason is that during the cooling and solidification process of molten electrolyte in the NaF-KF-  $\text{AlF}_3$  system, multiple phases such as  $\text{KAlF}_4$ ,  $\text{K}_2\text{NaAlF}_6$ ,  $\text{K}_2\text{NaAl}_3\text{F}_{12}$ ,  $\text{Na}_5\text{Al}_3\text{F}_{14}$ , and  $\text{Na}_3\text{AlF}_6$  exist, each with different solidification and phase transition heat release temperatures. The NaF-KF-  $\text{AlF}_3$  electrolyte system is a commonly used low-temperature electrolyte system in the research of inert anode aluminium electrolysis technology [10–12], and accurate measurement of the liquidus temperature of low-temperature electrolytes is becoming increasingly important.

In this study, a novel method based on electrical conductivity variation curves is proposed to determine the liquidus temperature, addressing the limitations of conventional approaches for low-temperature electrolyte in the NaF-KF- $\text{AlF}_3$  system. This method exploits the fact that the molten electrolyte remains clear above the liquidus temperature and becomes turbid below it, combined with the characteristic changes in conductivity with temperature between these two states, to accurately identify the liquidus temperature. This method successfully validated its accuracy in measuring the liquidus temperature of industrial electrolytes and was used to measure the liquidus temperature of the NaF-KF- $\text{AlF}_3$  system at different molecular ratios.

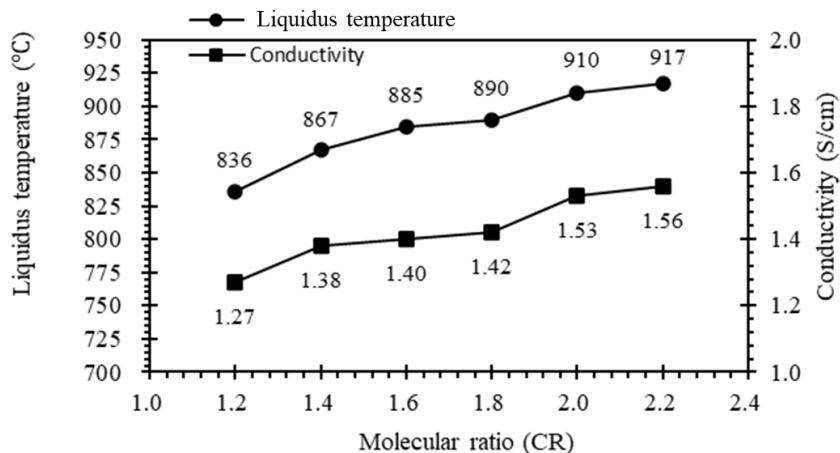
## 2. Experimental Method

### 2.1 Determination of Temperature Range

Before the experiment, the electrolyte to be tested was crushed and mixed evenly, then dried at a constant temperature of 200 °C for more than 48 hours in a vacuum drying oven and stored in a desiccator for later use.

The electrolyte was placed in a lidded corundum crucible, heated and held in a well-type furnace until completely melted. Then the crucible lid was opened, and a thermocouple was inserted into the molten electrolyte to measure its temperature in real time. After turning off the furnace and allowing it to cool naturally, the transition process of the molten electrolyte from a clear to a turbid state was observed visually. The temperature at the inflection point, at which the liquid changed from clear to significantly turbid was recorded (rough value, assumed liquidus temperature), and the temperature range for measurement was determined based on the temperatures of the molten aluminium electrolyte in its clear and turbid states respectively.

### 2.2 Conductivity Measurement


The Continuous Variation of Cell Constant method (CVCC) is a commonly used technique for measuring the conductivity of molten electrolytes. Its principle is as follows: in a fixed molten salt circuit, an alternating current signal of constant frequency is applied, and the total resistance of the circuit has a linear relationship with the cell constant. The linear coefficient is a constant related to the molten salt conductivity, and the change in cell constant is caused by the change of the conductivity cell, namely (Equation (1)):

$$\kappa = 1 / A \left( \frac{dR}{dL} \right)_{\text{average}} \quad (1)$$

where:

|          |                                                        |
|----------|--------------------------------------------------------|
| $\kappa$ | Conductivity, S/cm                                     |
| A        | Electrode area of the conductivity cell, $\text{cm}^2$ |

electrolyte increases with molecular ratio. Specifically, each 0.1 increase in molecular ratio leads to an average rise of 0.036 S/cm in conductivity.



**Figure 12. Liquidus temperature and conductivity variation curves of low-temperature electrolytes with different molecular ratios.**

## 5. Conclusions

The method of determining the liquidus temperature from the electrical conductivity variation curve has an error less than 0.17 % compared to the stepwise cooling curve method, indicating its high accuracy. This method can be used not only to measure the liquidus temperature of industrial electrolytes but also for the NaF-KF-AlF<sub>3</sub> low-temperature electrolyte system. It effectively addresses the limitations of the traditional stepwise cooling curve method, which struggles to accurately measure the liquidus temperature of low-temperature electrolytes in the NaF-KF-AlF<sub>3</sub> system. Additionally, it provides conductivity data during the measurement of the liquidus temperature.

## 6. Acknowledgments

We are sincerely grateful to Mr. Qin Shengguang, Director of the Aluminium Electrolysis Smelter, Mr. Leng Longyang, Deputy Director, and Mr. Lan Huanpeng, Associate Senior Engineer, all of Chalco Zunyi, for their strong support and assistance in sampling industrial high-potassium, high-lithium, purified aluminium electrolytes and in the associated analytical and testing work.

## 7. References

1. Yexiang Liu, et al., *Modern Aluminium Electrolysis*, Beijing: Metallurgical Industry Press, 2008 (in Chinese) <https://www.mip1953.com/productinfo/1239821.html>.
2. Naixiang Feng, *Aluminium Electrolysis*, Beijing: Chemical Industry Press, 2004 (in Chinese).
3. N. W. F. Phillips, R. H. Singleton and E. A. Hollingshead, Liquidus curves for aluminium cell electrolyte II : Ternary system of cryolite aluminium with sodium fluoride, sodium chloride, and aluminium fluoride. *J. Electrochem. Soc.*, 1955, 102(12), 690–692, <https://iopscience.iop.org/article/10.1149/1.2429946>.
4. David A. Chin and E. A. Hollingshead, Liquidus curves for aluminium cell electrolyte IV: systems Na<sub>3</sub>AlF<sub>6</sub>-Al<sub>2</sub>O<sub>3</sub> and MgF<sub>2</sub>, Li<sub>3</sub>AlF<sub>6</sub> and K<sub>3</sub>AlF<sub>6</sub>, *J. Electrochem. Soc.*, 1996, 113(7), 736–739, <https://iopscience.iop.org/article/10.1149/1.2424103> .

5. Xia Cheng, Design of Liquidus Temperature Detection Device for Aluminium Electrolyte, Master's thesis, Northeastern University, 2017 (in Chinese).
6. Weijie Chen, et al., Effect of Potassium Tetrafluoroaluminate on Low-temperature Aluminium Electrolysis in High-lithium Electrolytes, *Light Metals*, 2019, (01), 40–43 (in Chinese).
7. Yanfang Wang et al., Study on the Effect of KF Content on the Physicochemical Properties of Aluminium Electrolytes, *Light Metals*, 2022, (02), 18–21 (in Chinese).
8. Dong Shi, In-situ Rapid Measuring Method for Process Parameters in Aluminum Reduction Cells, PhD thesis, Northeastern University, 2014 (in Chinese).
9. Jiawei Wang, Pingyuan Zhao, Xueli Jin, Research Methods and Current Status of Liquidus Temperature of Aluminium Electrolytes, *Light Metals*, 2010, 04: 24–29 (in Chinese).
10. Hongmin Kan, Study on Low-Temperature Aluminium Electrolysis, PhD thesis, Northeastern University, 2007 (in Chinese).
11. Liqiang Huang, Study on NaF-KF-AlF<sub>3</sub> Low-temperature Electrolyte System, Kunming University of Science and Technology, Master's thesis, 2020 (in Chinese).
12. Zheng Wei, Fundamental Research on Aluminium Electrolysis in NaF-LiF-KF-AlF<sub>3</sub> Low-temperature Molten Salt System, Master's thesis, Northeastern University, 2024 (in Chinese).